再加上支撑反作用力的矢量分解。
弯道跑时,地面支撑反作用力GRF可分解为垂直分力( F_v)和水平分力( F_h):
低重心启动会导致初始蹬伸时垂直分力占比过高,超过70%,正常启动约为55-60%,使身体重心过早上升,破坏弯道跑所需的“稳定侧倾”姿态。
垂直分力每增加10%,弯道切入时的身体侧倾角误差增加4.2°。
弯道跑要求水平分力兼具推进力切线方向和向心力法线方向。
低重心导致蹬伸方向偏向后下方,水平分力中切线分量占比超过85%,向心力分量不足正常需达30-35%,迫使运动员通过增加步频补偿转向力,加剧肌肉疲劳。
再加上重心过低对启动-弯道衔接阶段的特异性影响。
比如动量传递的时空不匹配。
启动阶段的主要任务是快速建立水平动量,而弯道切入需完成动量方向的重定向。
据冲量定理,低重心时蹬伸力作用时间虽延长,但力值峰值降低,最终冲量增量仅为正常姿势的89%,水平速度增益减少。
动量矢量的重定向需克服惯性矩。
低重心时身体转动惯量的轴向分量增加18%,因躯干前倾导致质量分布远离转轴,使转向所需的角冲量增加,延长切入弯道的调整时间超过0.2s即显著影响成绩。
再配合呼吸-循环系统的力学耦合障碍。
好像的确是……
死局。
无法突破。
但其实。
只是现在看起来没办法。
可对于拥有未来知识体系的苏神来说。
就完全不同了。
在他眼里。
这根本就不是不可破的铁律。
事实上。
办法多的是。
首先利用曲臂起跑上肢动力链的角动量耦合原理,做转动惯量的数量级差异。
曲臂摆臂的角加速度可达直臂的4倍,单位时间内产生的角动量提升50%,使躯干转向所需主动力矩降低30%以上。
弯道切入时,重点来了。
切弯道!
苏神右臂需向心侧摆动产生正向角动量。
左臂维持小幅前后摆动平衡力矩。
曲臂状态下,右臂摆幅可精准控制在45°-60°,打破直臂受限至30°-40°,角动量矢量与弯道圆心夹
本章未完,请点击下一页继续阅读!