=力F×力臂L,转动惯量I=质量m×半径r,在力矩不变的情况下,转动惯量与半径的平方成正比,半径增大必然导致角速度ω下降。
实验数据显示,传统跑法中摆动腿的角速度约为320°/s。
增大的转动惯量使摆动腿前摆时间延长至280-300ms,步频就会优先支撑不住下降。
步频一旦下降。
支撑腿蹬伸产生的能量无法快速传递至摆动腿。
最终导致能量在支撑阶段被过度消耗。
而这里苏神直接开了一个分支。
利用前摆复位技术,进行控制膝关节微屈。
因为。
前摆复位技术通过“控制膝关节微屈”,显著缩短了摆动腿的能量传递半径。
该技术要求摆动腿前摆阶段膝关节保持120°-130°的微屈角度,此时从髋关节中心到脚尖的距离缩短至0.8-0.9m,转动惯量比传统跑法降低40%-45%。
在髂腰肌收缩力不变的情况下,摆动腿角速度提升至450°/s,前摆时间缩短至200-220ms,步频不但不会下降,反而可能还能有所提升。
起码也能够继续维持。
那这样的话。
角速度的提升直接带动摆动腿线速度增加。
之前跑法中摆动腿脚尖线速度约为6.5m/s,采用该技术后提升至8.2m/s,线速度的增加使摆动腿能够更快地完成前摆与着地,为支撑腿蹬伸提供更充足的时间。
进而提升支撑腿对地面的压力。
从之前跑法的2.8倍体重提升至3.2倍体重。
就可以……获得更大的地面反作用力,推动髋关节功率输出突破传统极限。
也就是缩短摆动腿能量传递半径。
提升角速度与线速度。
这样……
落在加特林等人的眼里。
苏神就像是开了挂。
75米!
这个时候身体的疲劳开始加剧。
以往在这个地方,因为冲的太狠。
又来了一波极致爆发。
身体的各方面运转都会出现一些细微的问题。
这些细微的问题最终反映到短跑的动作上,就是各个动作出现细微的脱节。
最终影响能量的整体传递。
让能量的传递也脱节。
速度自然就慢了。
本章未完,请点击下一页继续阅读!